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I. Introduction 15 

Diseases affecting bone are the second most common cause of disability and are predicted to 16 

increase in prevalence in an aging population[1]. Imaging plays an increasingly important role in 17 

diagnosis, assessment of treatment response and follow up of diseases affecting bone, and provides 18 

a valuable alternative to invasive biopsy. Modern ‘physiological’ imaging techniques provide not only 19 

anatomical but also functional information, giving us valuable insights into the bone 20 
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microenvironment in both health and disease. As imaging delves deeper into tissue physiology, it is 21 

increasingly important that radiologists are aware of the effect of tissue pathology on the images 22 

they interpret. MRI has the versatility to image these aspects of bone pathology and lends itself to 23 

quantitative analysis. Furthermore it can image bone in detail or give an overview of skeletal 24 

involvement in disease.  25 

Although in clinical practice most images are analysed qualitatively by radiologists, there has been a 26 

trend towards using quantitative imaging methods which provide objective physical measurements 27 

from tissue such as diffusivity, perfusion or tracer uptake. To quantify is to measure, and 28 

quantification within the science of magnetic resonance arose from the ability to measure the NMR 29 

properties of biological tissue. This led to attempts to characterise the nature of the tissue using 30 

these parameters [2]. Quantitative MRI therefore uses measurable MR parameters to describe 31 

tissue, rather than forming an image from non-quantitative values.  32 

For a parameter to be clinically useful, it has to reflect a biologically significant process, such as 33 

change in a meaningful manner with the exacerbation or resolution of a disease process. There are a 34 

number of advantages to truly quantifying MR measurements. It is easier to test for reproducibility, 35 

sensitivity and specificity of the measurement. The data are easier to model and assess 36 

mathematically, and have the potential for machine learning and population studies. There is also 37 

the potential for automation of assessment in a manner not amenable to qualitative data.  38 

In this work, we provide a brief overview of bone physiology and pathophysiology, before 39 

considering how magnetic resonance (MR) techniques can be used to ‘probe’ these physiological 40 

and pathophysiological processes.  41 
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II. Bone Physiology and Pathology 42 

1. What is Bone? 43 

Although the skeleton is sometimes viewed as a simple structural support for the body, it is 44 

increasingly clear that bone is in fact an active, dynamic organ, which plays a central role in the 45 

coordination of metabolic, endocrine and haematological processes. Bone is integral to the 46 

homeostasis of minerals such as calcium and phosphate, serves as a reservoir of growth factors and 47 

is the cradle of haematopoiesis[3].  48 

The skeleton is composed of around 80% cortical bone and 20% trabecular bone [4]. Cortical bone is 49 

dense and composed of a branching network of cylindrical osteons called Haversian systems. 50 

Trabecular bone consists of osteons called packets arranged in a honeycomb pattern. The non-51 

mineralised component of bone is called bone marrow and consists of adipocytes (yellow marrow) 52 

and haematopoietic cells (red marrow). The outer cortical surface of bone is covered in periosteum, 53 

except at joints, and the inner surface is covered by endosteum. Periosteum is a fibrous connective 54 

tissue whereas the endosteum is a membranous structure; both contain blood vessels, osteoblasts 55 

and osteoclasts.  56 

The major cellular constituents of bone are osteoclasts, osteoblasts and osteocytes, which are 57 

surrounded by mineralised extracellular matrix. Osteoblasts synthesise bone matrix and regulate 58 

mineralisation by releasing vesicles that contain calcium and phosphate. The mineralised matrix of 59 

bone consists of collagenous proteins (mainly type I collagen) and bone mineral, which is mainly 60 

hydroxyapatite (4). Osteoblasts, which are surrounded by and buried within this matrix, then 61 

differentiate into osteocytes. A biochemical network forms connecting bone surface lining cells and 62 

osteocytes. Their main function is to transduce mechanical stress into a biological response by 63 

signally to the network of osteocytes and osteoblasts. Osteoclasts play a central role in bone 64 

remodelling and are the only cell capable of resorbing bone.  65 
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Bone is a dynamic structure, which undergoes growth, modelling and remodelling during life under 66 

influences from mechanical forces, metabolic factors and hormonal action. Bone remodelling is a 67 

continuous process where units of old bone are removed and replaced by new proteinaceous 68 

matrix, which is then mineralised. [4]. Regulation of osteoclast mediated bone resorption is under 69 

the influence of parathyroid hormone, vitamin D and calcitonin. Mineralisation of the matrix is 70 

regulated by osteoblasts and this modulates serum levels of calcium and phosphate under the 71 

influence of vitamin D. After a cycle of remodelling, 50 to 70% of osteoblasts undergo apoptosis and 72 

the others become osteocytes and bone lining cells[4]. Abnormal modelling can be activated in 73 

disease states such as multiple myeloma where osteoclasts are activated by bone lining cells 74 

expressing tartrate-resistant acid phosphatase due to an abnormal microenvironment created by 75 

plasma cell infiltration [4]. 76 

One of the most important functions of bone is haematopoiesis. The haematopoietic system is 77 

responsible for producing more than 100 billion mature blood cells a day [3]. Haematopoietic stem 78 

cells reside in the endosteum termed 'the haematopoietic niche' and have a rich vascular supply. 79 

The interactions between bone microenvironment and haematopoiesis are complex but its 80 

understanding is increasing rapidly. In particular, the bone microenvironment has been shown to 81 

play an important role in the pathogenesis of many diseases. For instance in leukaemia, bone 82 

marrow infiltration can suppress and stimulate osteoblasts [5].  Metastatic cancer cells have been 83 

shown to compete with haematopoietic cells for resources [5]. Hormones also influence the 84 

haematopoietic microenvironment. Both parathyroid hormone and oestrogen have been shown to 85 

have a role in modulation of the haematopoietic stem cells [3].   86 

 87 
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2. Bone Pathology 88 

A useful way of classifying bone pathology is by micro-architectural changes, which radiologists can 89 

infer from imaging. New imaging techniques can detect abnormalities in density, quality, porosity, 90 

cellularity, the presence of fibrosis and fat content.  91 

i. Change in cellularity 92 

Bone cellularity is increased in pathological processes such as malignancy, infection and 93 

inflammation. These pathological processes can be further classified by which compartment they 94 

affect. For instance, primary and secondary bone tumour, infection and inflammation cause a 95 

change in cellular density and alter the size of the extracellular space. On the other hand, abnormal 96 

mineralisation or fibrosis in the extracellular space can cause increased packing of cells.  The 97 

microenvironment of bone changes early and rapidly in aggressive processes. Rapid increases in 98 

bone cellularity cause a loss of fat, destruction of bone trabeculae and formation of new blood 99 

vessels, which can be quantified by MR techniques.  100 

 101 

ii. Change of Vascularity 102 

Bone is highly vascular and changes in vascularity can be a useful indicator of disease. Perfusion of 103 

bone is increased in inflammation and neoplasia. Reduced perfusion is seen in patients with 104 

peripheral vascular disease and with red cell abnormalities such as sickle cell anaemia.  105 

The effect of reduced perfusion of bone can be seen as fairly characteristic lesions on MR. The 106 

earliest imaging sign of bone infarction is bone oedema, which represents cytotoxic oedema. In the 107 

chronic phase, fibrosis of the marrow and sclerosis of bone is seen.  108 

Increased perfusion to bone can occur in various pathological states. Perfusion of tissues is complex 109 

and involves various compartments. One of the simplest models explaining tissue perfusion uses two 110 

compartments: blood plasma and the interstitial space[6]. For a given cardiac output, increased 111 



 6 

tissue perfusion can be due to increased permeability of existing vessels or an increase in the 112 

number of blood vessels supplying tissue. Both increased permeability and neo-angiogenesis exist in 113 

inflammation and neoplasia; and can be detected by MR techniques.  114 

iii. Change of bone remodelling 115 

 116 

Many disease processes affecting bone lead to bone fragility characterised by a decrease in bone 117 

mass and quality. Bone quality depends on several factors such as bone mineralisation, remodelling 118 

rate, number of micro-fractures and microarchitecture [7]. Bone loss takes place due to remodelling 119 

imbalances in the activity of osteoclasts and osteoblasts. Several factors can perturb this balance 120 

from changes in hormone concentration in osteoporosis to inflammatory cytokines in rheumatoid 121 

disease[8].   122 

When this balance is tipped in the favour of bone loss in osteoporosis, there is a reduction in bone 123 

mass with thinning of trabeculae and increased porosity of cortical bone. Although the thinning of 124 

the trabecular network is well recognised, cortical porosity has been less well studied due to the 125 

challenges in its imaging. Traditional approaches have measured cortical bone thickness, which does 126 

not fully characterise its quality. In fact the degree of porosity is considered the main microstructural 127 

feature of the cortex [9]. Porosity may seem like a property that leads to an inherent mechanical 128 

weakness of bone but it serves an important purpose. The vascular channels are required to sustain 129 

and nourish the syncytium of interconnected osteocytes, whereas the nanopores play an important 130 

role in mechanosensation [10]. Although the mechanical cost of porosity is small in healthy bone, in 131 

pathological states, such as chronic kidney disease, disuse and parathyroid treatment, increased 132 

porosity leads to bone fragility [9]. Geographical increases in porosity due to inefficient 133 

redistribution of bone mass is associated with increase rates of fracture in patients with diabetic 134 

patients [11].  135 
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III. Imaging Methods 136 

i. Diffusion weighted imaging 137 

Diffusion weighted imaging assesses the Brownian motion of water in its microscopic environment. 138 

The signal detected reflects the movement of water at a micrometre scale beyond the usual 139 

millimetre resolution of MRI. The diffusion-weighted image however is affected by other parameters 140 

other than diffusion such as tissue perfusion and T1 and T2 relaxation times. The DWI image is 141 

constructed by applying diffusion sensitising gradients to a T2 weighted image. The degree of 142 

diffusion sensitisation is defined by the 'b value'; with lower b values providing perfusion weighting 143 

and higher b values providing diffusion weighting [12]. However as T1 and T2 relaxation times of 144 

tissue vary under different physiological and pathological conditions, diffusion weighted imaging can 145 

be difficult to interpret.  Apparent diffusion coefficient calculations can quantify the diffusion effect 146 

by using two or more acquisitions at different b values[13]. The ADC value is only truly accurate if 147 

water diffusion behaves freely but in tissue it remains useful as it gives a summary of the diffusion 148 

characteristics at a voxel level. Diffusion is restricted when molecules encounter boundaries which 149 

prevent free movement and in human tissue the main boundaries are cell membranes [14]. The 150 

variation of ADC in physiological or pathological conditions is thought to be due to the effect of 151 

processes largely affecting the extracellular space. The contraction of the extracellular space from 152 

cell proliferation or swelling causes restricted diffusion as indicated by a decrease in ADC.  With 153 

improving technology, higher b values can be achieved and, with more complex analyses, may reveal 154 

intracellular space and membrane interactions [15]. 155 

ADC values of bone correlate with bone marrow cellularity and micro vessel density in the 156 

extracellular space and this has been shown to be useful in neoplastic conditions. For instance, ADC 157 

can increase in osteosarcoma following chemotherapy, indicating tumour response even when no 158 

reduction in tumour size has occurred [Figure 1] [16]. In multiple myeloma, whole body DWI has 159 

been shown to be a highly sensitive technique for quantifying disease burden [17] and can detect 160 
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early treatment response, relapse and progression even when not captured by serum and urine 161 

analysis [Figure 2] [18]. With successful treatment, the volume of cell infiltration decreases and 162 

there is less restriction to free water movement, leading to an increase in ADC values [19]. The use 163 

of several b-values allows differentiation between perfusion and diffusion effects on signal in bone 164 

marrow. Both rapid micro perfusion, which causes a fast initial decay due to abnormal blood vessel 165 

proliferation, and slower signal decay related to diffusion in the interstitial space can be evaluated 166 

by the intra-voxel incoherent motion model in myeloma [20]. The ability to measure difference in 167 

metrics allows for a quantitative assessment of disease burden, which can be monitored on follow 168 

up studies.  169 

DWI is effective in early diagnosis of sacroiliitis and monitoring treatment response in patients with 170 

seronegative sponyloarthropathies [21,22]. ADC values are significantly higher in patients even in 171 

the early stages of ankylosing spondylitis compared to normal controls [23]. In enthesitis related 172 

arthritis DWI measurements reflect the response to anti-THF therapies and are more objective than 173 

visual scoring [22]. Computation tools have been developed to quantify bone ADC values which are 174 

comparable to conventional STIR sequences [21]. DWI has been shown to be useful in the 175 

assessment of hip ischaemia in patients with Legg-Calve-Perthes disease [24], and in particular, 176 

median ADC ratios have reported as a reproducible means of assessing hip ischaemia.   177 

ii. Dynamic Contrast Enhancement 178 

DCE-MRI is based on rapid acquisition of images after contrast injection allowing quantification of 179 

tissue perfusion and kinetics. The basis of DCE MRI is the rapid acquisition of a series of T1-weighted 180 

images before and after infusion of a T1-shortening, diffusible contrast medium [6].These can 181 

provide a detailed time-intensity curve which can then be used to estimate the concentration of 182 

contrast medium in the region of interest [25].  183 

DCE-MRI is useful in assessing microcirculation of bone marrow infiltrated by tumour. Tumour 184 

angiogenesis in myeloma leads to increased uptake of contrast and this subsequently decreases with 185 
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effective therapy [26]. In myeloma, DCE-MRI has been shown to be useful in distinguishing hyper-186 

cellular haematopoietic marrow from neoplastic marrow. Perfusion changes can occur early in 187 

treatment response as has been shown in osteosarcoma correlating with histological necrosis [27].  188 

DCE MRI lends itself to quantitative analysis. Semi-quantitative analysis is based on the time to 189 

intensity graph, which can be used to calculate various metrics such as time to peak and area under 190 

the curve. The early phase of enhancement reflects tissue micro-vascularisation and the later phases 191 

of washout reflect capillary permeability and interstitial space enhancement [28]. Quantitative 192 

perfusion analysis uses pharmacokinetic models to explain contrast exchange between the 193 

intravascular and extravascular space. There are three principle parameters: the transfer constant 194 

Ktrans, the extravascular extracellular space fractional volume (Vc) and Kcp (backflow transfer constant) 195 

[26].  In highly permeable scenarios, the transfer constant is equal to blood plasma flow per unit 196 

volume of tissue and in low permeability it depends on the permeability between blood plasma and 197 

the extravascular extracellular space. Characteristic perfusion patterns can aid the diagnosis of  198 

osteoid osteomas, osteoblastomas, and giant cell tumours of bone [29]. 199 

 200 

iii. Chemical Shift-Encoded Imaging 201 

Chemical shift-encoded imaging (CSI) was first described by WT Dixon, using a simple modification of 202 

a spin echo sequence to acquire  ‘fat-water in phase’ and ‘fat-water opposed phase’ images, 203 

facilitating the generation of water-only and fat-only images [30]. Although there were a number of 204 

technical limitations with the original technique, this technology has now developed to the point 205 

where fast, accurate and quantitative CSI is relatively easy to implement on most clinical scanners.  206 

Modern CSI typically uses multi-echo spoiled gradient echo (SPGR) sequences, with data acquisition 207 

at multiple echo times (usually between 3 and 8). There are a variety of analytic tools available that 208 

can generate fat fraction maps, for example ‘Iterative Decomposition with Echo Asymmetry and 209 
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Least squares (IDEAL)’ [31].  Each pixel has a value of between 0 (pure water), and 1 (pure fat). In 210 

normal bone marrow, most pixels have a value around 0.5, indicating approximately equal signal 211 

contributions from water and fat.  212 

CSI is particularly useful for disorders, which affect the bone marrow, where pathological processes 213 

tend to cause either an increase or a decrease in fat content. For example, a number of authors have 214 

demonstrated a reciprocal relationship between marrow fat and bone mineral density in patients 215 

with osteoporosis, leading to investigation of FF as a biomarker in osteoporosis [32–35]. Similarly, in 216 

obese patients, marrow fat has an adverse effect on bone microarchitecture [36]. Interestingly, 217 

patients with anorexia nervosa undergo an increase in marrow fat content despite losses in overall 218 

body fat, possibly because marrow adipose tissue undergoes a homeostatic change designed to 219 

increase appetite and insulin sensitivity [37,38].  220 

In patients with metastatic cancer, tumour cells infiltrating the marrow effectively ‘displace’ the 221 

normal fatty marrow and therefore cause a reduction in FF. For example, symptomatic multiple 222 

myeloma patients have significantly lower FF measurements than those with symptomatic disease 223 

[39]; FF measurements can potentially also be used to stratify patients according to their depth of 224 

response to treatment [Figure 3] [40].  225 

An interesting recent development is the use of CSI to quantify inflammation in patients with 226 

spondyloarthritis. Areas of ‘active’ juxta-articular inflammation (bone marrow oedema) cause a 227 

reduction in FF, whereas chronically inflamed sites (fat metaplasia) undergo an increase in FF [Figure 228 

4] [41]. FF measurements could therefore be useful as a marker of inflammatory disease severity 229 

and activity. A key advantage of CSI in this setting is that disease severity can be assessed directly 230 

from the image, removing the need for subjective interpretation by a radiologist. 231 

   232 
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iv. Ultra short TE and Zero-TE 233 

The MR signal intensity of a voxel containing tissue is dependent on many factors including the mean 234 

transverse relaxation time (T2 and T2*) of the tissue being examined in a particular voxel. Tissues 235 

are heterogeneous and are composed of a spectrum of transverse relaxation times.  Bone, especially 236 

cortical bone, contains a high fraction of components with ultrashort transverse relaxation times, 237 

which are in the order of 0.39-0.5 msec. However ultrashort time to echo (UTE) sequences including 238 

zero TE using short minimum echo times below 1 msec are now able to interrogate the 239 

microarchitecture of bone. One of the main challenges in cortical bone imaging is the contamination 240 

of signal from muscle and fat, which is being addressed by novel subtraction techniques [42] These 241 

techniques have produced promising quantitative cortical bone maps [Figure 5]. Zero-TE sequences 242 

differ from other ultrashort TE sequences because the readout gradient is applied prior to excitation. 243 

It has some advantages over other UTE sequences including reduced eddy current effects and 244 

minimal acoustic noise due to the elimination of rapidly switching gradients in between TRs. 245 

UTE sequences have been used to study cortical porosity by characterising bound water versus free 246 

water. Porosity is an important determinant of bone quality and strength[43]. A study has shown 247 

that indirect measurements of porosity and T2 relaxation times of cortical bone may be correlated 248 

with its material property; for instance short T2 relaxation times have been shown to correlated with 249 

failure strain in cadaveric femoral bone [44]. Zero TE sequences have been used to study in vivo 250 

trabecular bone architecture [45].  251 

 252 

 253 
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3. Imaging at the Extremes of Scale: From Single Voxel Spectroscopy to Whole 254 

Body Imaging 255 

i. MR Spectroscopy 256 

MR Spectroscopy (MRS) provides information on the molecular composition of tissue and has been 257 

used in the brain to characterise lesions but it also shows promise for bone lesions and bone marrow 258 

imaging. MRS spectra can be acquired from nuclei, which have non-zero spin such as protons, 259 

carbon-13 (13C), sodium (23Na) and phosphorus-31 (31P). In musculoskeletal imaging, proton MRS has 260 

been studied the most in the context of tumour and fat characterisation. 31P spectroscopy requires 261 

specialised hardware and provide lower spatial resolution [46] but has been used to investigate 262 

energy metabolism in normal and diseased states.  Sodium MRI images the sodium nuclei of tissues 263 

but in musculoskeletal imaging, it remains a research tool primarily in early osteoarthritis looking at 264 

hyaline cartilage proteoglycan losses [47].  265 

The most common methods of fat characterisation by proton MRS are single voxel methods such as 266 

stimulated echo acquisition mode (STEAM). Single voxel methods are simpler, faster and suffer less 267 

from magnetic field inhomogeneity compared to multivoxel techniques [46]. Aggressive bone lesions 268 

demonstrate high cell membrane turnover and studies have shown that the metabolite choline, 269 

which encompasses free choline, phosphocholine and glycerophosphocholine, is increased in 270 

malignant lesions [43]. Early studies on MR spectroscopy of bone lesions used a qualitative 271 

assessment of choline content but more recent studies have calculated absolute choline 272 

concentrations [48]. There are limitations to this method but there is a movement towards 273 

quantitative assessments of the tumour metabolic signature in the literature [43]. MRS therefore 274 

shows promise in increasing sensitivity and specificity of MR in detecting malignancy and therefore 275 

obviating invasive biopsies.  276 

1H-MRS has also been used to study the triglyceride chemical composition of bone marrow in vivo 277 

[49] and elevated marrow lipid content has been found in patients with osteoporosis and osteopenia 278 
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[50]. Since lipid peaks in marrow are usually incompletely resolved on 1H-MRS, the application of 279 

prior knowledge in spectral analysis can enable the reliable assessment of overlapping lipid peaks 280 

[51]. Provided that signal contributions from individual lipid peaks can be identified and measured, 281 

1H-MRS can also assess changes in lipid composition that occur in osteoporosis. 282 

 283 

ii. Micro-MRI 284 

Micro-MRI provides high resolution imaging of bone allowing the evaluation of both cortical and 285 

trabecular properties at a scale of 100-200 micrometres (in plane resolution)[52].  It rivals and 286 

performs similarly to high-resolution peripheral quantitative computed tomography (HR-pQCT) 287 

without using ionising radiation.  Micro-MRI use sequences such as spoiled gradient echo, balanced 288 

steady state free precession (b-SSFP) and fast large spin echo (FALSE) to provide exquisite detail of 289 

bone [53][54]. Metrics such as bone volume fraction, topology and orientation can be quantified 290 

which correlate well with equivalent CT measurements [55].  291 

Micro-finite-element analysis can be applied to high resolution data sets to analyse the examined 3D 292 

trabecular network and estimate mechanical properties such as stiffness and elastic modulus [56].. 293 

Furthermore 3D voxel models can be fed into a micro-finite-element stimulator, which can model 294 

the change in parameters in response to intervention and predict the mechanical implications of 295 

hormonal treatments such as in osteoporosis [20].  296 

iii. Whole Body MRI 297 

From detailed imaging of the microarchitecture of bone, WBMRI images abnormalities throughout 298 

the skeleton. This approach is useful for systemic conditions affecting bone such as haematological 299 

malignancies, bone metastases and rheumatological disorders. Studies comparing WB-MRI and PET-300 

CT on a lesion by lesion basis have shown higher overall diagnostic accuracy for WB-MRI [57]. 301 

Furthermore whole body data sets using functional sequences such as DWI and DCE can be used to 302 

create quantitative maps of disease burden and activity [58]. DWI lends itself to easy delineation of 303 
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bone lesions with semi-automated segmentation software. This has been used to quantify burden of 304 

disease which correlates with established prognostic biomarkers [59]. Furthermore ADC changes in 305 

individual lesions and globally in the whole body can be used to determine treatment response in 306 

patients with metastatic bone disease and myeloma [60,61]. 307 

WBMRI has become the gold standard for assessment of multiple myeloma as it is more sensitive for 308 

marrow infiltration by plasma cells compared to conventional radiography and CT [Figure 2] [62]. MR 309 

imaging patterns of bone marrow involvement have been shown to have prognostic value (diffuse 310 

disease has a better outcome than focal lesions) and correlate with 5 year survival rate in patients 311 

treated with autologous bone marrow transplantation[63]. WB-MRI outperforms bone scintigraphy 312 

in the detecting metastatic bone disease from solid cancers as shown in meta-analyses[64]. 313 

In the setting of ankylosing spondylitis, WBMRI allows the global assessment of both acute and 314 

chronic involvement of the axial and peripheral skeleton. Detecting pre-structural changes are 315 

important in diagnosing the condition early allowing for early aggressive treatment and improving 316 

patient outcome [65]. 317 

The main obstacles to the widespread adoption of WB-MRI are related to access to scanners, and 318 

lack of radiological expertise.  Scans can be long but with careful planning and the use of fast 319 

imaging sequences (such as Dixon scans), whole body scans with both morphological and functional 320 

imaging can be achieved in as little as 30 minutes [66].  321 

WB-MRI data sets represent a daunting amount of information for radiologists to read. However 322 

with standardisation in MRI acquisition and validated biomarkers, automatic segmentation will help 323 

radiologists analyse image sets rapidly and understand disease phenotypes at a population level. 324 

There are a number of techniques which are being refined but the most promising are based on 325 

machine learning [67].   326 

 327 
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IV. Conclusion 328 

Bone imaging is changing. MRI can provide anatomical and functional information and 329 

multiparametric and quantitative techniques offer a new insight into bone disease. These techniques 330 

have the potential for improvement of disease diagnosis, assessment of disease activity and 331 

treatment response, and for prognostication. Using computational methods it may be possible to 332 

create a comprehensive anatomical map of disease with quantitative metrics on disease activity and 333 

bone quality. These data have the potential for early treatment stratification and therapeutic 334 

escalation where necessary.  335 

The challenge for radiologists is identifying which parameters add clinical value. Currently there are a 336 

number of techniques, which provide interesting data about disease processes but there is a lack of 337 

evidence comparing these techniques in a quantitative way to determine the quality of diagnostic 338 

information. Furthermore, there is a lack of economic analyses comparing different techniques and 339 

on the evaluation of the impact on patient outcome. Further research is necessary to assess the true 340 

impact of quantitative bone measurements on disease management and outcome.  341 

 342 

 343 

 344 

 345 

Figures 346 

Figure 1 347 

MRI images of the lower limb of a 26-year-old male with osteosarcoma before and after two cycles 348 

of chemotherapy: Coronal T2W showing a metaphyseal lesion (a1, arrow), which has not changed in 349 
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size post treatment (a2). Axial m-Dixon fat only image (b1) shows no appreciable difference post 350 

treatment (b2). Axial DWI b1000 image (c1) showing a penumbra of high signal in the lateral aspect 351 

of the lesion before treatment which is of lower signal post treatment (c2). Axial ADC map (d1) 352 

shows corresponding low ADC in the periphery suggestive of cellular tumour, which increases post 353 

treatment suggestive of response to treatment (d2) (Images courtesy of Dr. Harbir Sidhu, University 354 

College London Hospital).  355 

Figure 2 356 

Representative MR images showing a bone lesion in the right pelvis of a patient with Multiple 357 

Myeloma before and 8 weeks after treatment.  Focal lesion (arrow) demonstrated on (A) coronal 358 

pre‐contrast fat‐only mDixon, (B) pre‐contrast water‐only mDixon, (C) post‐contrast water only 359 

mDixon and (D) b1000 diffusion weighted imaging at baseline (A1–D1) and 8 weeks (A2–D2) in a 360 

patient who achieved very good partial response after induction chemotherapy (images courtesy of 361 

Dr. Dr Arash Latifoltojar, University College London Hospital). 362 

Figure 3 363 

Whole body chemical shift-encoded MR (CSE-MR) images from a patient with multiple myeloma. Fat 364 

only (A), water only (B) images, and fat fraction maps (C), are shown from left to right. A diffuse 365 

pattern of cellular infiltration of the vertebral bodies and iliac wings is demonstrated bilaterally in 366 

contrast to the normal fatty composition of the femoral and tibial bone marrow (images courtesy of 367 

Dr. Arash Latifoltojar, University College London Hospital).  368 

Figure 4 369 

Quantifying disease in Spondyloarthritis by Fat fraction mapping (PDFF – proton density fat fraction). 370 

Coronal images of the sacroiliac joints show areas of periarticular bone marrow oedema (a,b). 371 

Arrowed regions show high signal on the STIR image (a) and a reduction in fat fraction (b). 372 
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Conversely, areas of fat metaplasia (c,d), which arise in areas of previous inflammation, show high 373 

signal on the T1-weighted image (c), and increased fat fraction (d).  374 

Figure 5  375 

Cortical bone maps generated from phase sensitive dual inversion recovery subtraction using 376 

Ultrashort Echo time (UTE) MRI. Axial image of the tibia and fibula showing high signal in the cortical 377 

bone and no signal from surrounding fat or muscle (images courtesy of Professor Graeme Bydder, 378 

UCSD).  379 

 380 
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